Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
PROGRAM MUMPS_BENCH
!$ USE OMP_LIB
IMPLICIT NONE
INCLUDE 'mpif.h'
INCLUDE 'dmumps_struc.h'
C
C
C Purpose:
C =======
C
C Given MPI_PER_NODE, the number of MPI processes with the
C constraint that the number of MPI processes per node is
C constant,
C Given K, a factor (smaller than MPI_PER_NODE) defining the
C number of MPI processes per node that will belong to
C the same subcommunicator,
C
C This code creates NB_COMM_MAX internode communicators,
C such that NB_COMM_MAX = MPI_PER_NODE/K
C
C Once the new communicators (noted COMM) are defined we may run the
C same instance of MUMPS on 1,2, ... NB_COMM_MAX communicators. Each
C instance consists in factorizing and solving A x = b, where the
C system matrix A results from an 11-point Laplacian discretization
C on a 3D grid whose size is (NX, NY, NZ).
C
C Notes:
C =====
C
C * Each MPI process may have some threads.
C * If K > 1 and MPI_PER_NODE is not divisible by K, some
C MPI processes will not be used.
C * To avoid 100% core usage or in case of tests on machines
C with not enough physical cores, it may be worth to have
C barriers and collectives waiting instead of polling
C constantly, this can be done with:
C export OMPI_MCA_mpi_yield_when_idle=1 (openmpi)
C export I_MPI_WAIT_MODE=1 (intelmpi)
C
C Control parameters and file input format:
C ========================================
C
C The main control parameters are read from stdin on the
C MPI process with rank 0 in MPI_COMM_WORLD.
C Each input file defines the grid size, the factor K and the
C number of tests to be performed. Each test beeing characterized
C by a number of instances and if a check of the solution
C need be performed.
C
C EXAMPLE OF INPUT FILE:
C on 40nodes with 24 MPI per node
C K=2 leads to a maximum of 12 instances (NB_COMM_MAX= 12)
C
C 80 80 500 # NX NY NZ
C 2 # K
C 8 # iteration count
C 1 # NB_INSTANCES
C 1 # CHECK (0=OFF)
C 1 # NB_INSTANCES
C 0 # CHECK (0=OFF)
C 2 # NB_INSTANCES
C 0 # CHECK (0=OFF)
C 4 # NB_INSTANCES
C 0 # CHECK (0=OFF)
C 8 # NB_INSTANCES
C 0 # CHECK (0=OFF)
C MAX # NB_INSTANCES (MAX=NB_COMM_MAX)
C 0 # CHECK (0=OFF)
C MAX # NB_INSTANCES (MAX=NB_COMM_MAX)
C 0 # CHECK (0=OFF)
C MAX # NB_INSTANCES (MAX=NB_COMM_MAX)
C 0 # CHECK (0=OFF)
C
C The objective of this test is to measure the
C "TIME (seconds) FOR ITERATION" as a function of the
C number of instances.
C The num
C In the output file lines with "BENCH:" are most interesting
C for the benchers.
C
C
C ERROR return:
C ============
C - CONFIGURATION ERROR:
C The number of MPI process per node is not constant
C - ERROR during MUMPS ANALYSIS:
C see INFOG(1:2) in Section "Error Diagnostics" of
C MUMPS Users' guide
C - ERROR DURING MUMPS FACTORIZATION:
C see INFOG(1:2) in Section "Error Diagnostics" of
C MUMPS Users' guide
C - ERROR RESIDUAL (RINFOG(6)) TOO LARGE:
C RINFOG(6) (see MUMPS Users' guide) should be smaller
C than 1e-12.
C - ERROR FLOPS_REFERENCE DIFFERENCE is NONZERO
C The number of operation performed during
C factorization should be constant.
C
C Grid size
INTEGER :: NX, NY, NZ ! e.g. 80 80 500
C
C K factor
INTEGER :: K
C
C NB_ITERATIONS: the number of iterations, i.e.,
C the number of tests to be performd.
C
INTEGER :: NB_ITERATIONS
C
C NB_INSTANCES and CHECK will be read from the file
C NB_INSTANCES(I): between 1 and MPI_PER_NODE / K, larger values
C are treated as MPI_PER_NODE / K
C CHECK(I) : = 0 or 1. It indicates whether bwd error should
C be computed and checked (done if equal to 1)
INTEGER, ALLOCATABLE, DIMENSION(:) :: NB_INSTANCES
INTEGER, ALLOCATABLE, DIMENSION(:) :: CHECK
C
C
C
C ==================================================================
C
C
C FLOPS_REFERENCE is the reference number of flops (for a run
C where the bwd error was computed)
DOUBLE PRECISION :: FLOPS_REFERENCE
INTEGER :: I
C
C Each MPI process declares a MUMPS structure.
C MUMPS structures will be combined to have one MUMPS
C instance on each communicator.
TYPE (DMUMPS_STRUC) :: id
INTEGER, PARAMETER :: NRHS = 1
C Iteration-related
INTEGER :: IT ! loop index
INTEGER :: CHECK_IT, NB_COMM_IT
C Timing:
INTEGER :: t_start, t_end, t_rate
C
C OpenMP related
!$ INTEGER NOMP
C
C MPI-related
INTEGER :: THREAD_SUPPORT, IERR
INTEGER :: NPROCS_WORLD, MYID_WORLD
INTEGER :: NPROCS_COMM, MYID_COMM, NB_COMM_MAX,
& MPI_PER_NODE, MPI_PER_COMM
INTEGER :: COMM ! the new communicators
INTEGER :: MY_COMM_COLOR ! set to process color
C Each MPI must know the name of the node it is on.
C For validation purposes, use -DSIMULATE_SEVERAL_NODES
CHARACTER(len=80) :: TMP_STRING
CHARACTER(len=MPI_MAX_PROCESSOR_NAME) :: MYNAME
INTEGER :: MYNAME_LENGTH
C
C COLOR(rank in MPI_COMM_WORLD) => communicator number
C
C COLOR(i)==COLOR(j) if i and j are in the same communicator.
C Process i is associated to communicator COLOR(i)=0...NB_COMM_MAX-1
C and will participate to the computations only if COLOR(i) <= NB_INSTANCES(IT)
INTEGER, ALLOCATABLE, DIMENSION(:) :: COLOR
C
C
C Only one thread in each process calls MPI:
CALL MPI_INIT_THREAD(MPI_THREAD_FUNNELED, THREAD_SUPPORT, IERR)
CALL MPI_COMM_SIZE( MPI_COMM_WORLD, NPROCS_WORLD, IERR )
CALL MPI_COMM_RANK( MPI_COMM_WORLD, MYID_WORLD, IERR )
IF ( THREAD_SUPPORT .EQ. MPI_THREAD_SINGLE ) THEN
IF (MYID_WORLD .EQ. 0) THEN
WRITE(*,'(A)') "BENCH: Warning: MPI_THREAD_FUNNELED expected,"
WRITE(*,'(A)') "BENCH but MPI_THREAD_SINGLE provided"
ENDIF
ENDIF
FLOPS_REFERENCE = 0.0D0 ! special value meaning: not computed yet
C
ALLOCATE(COLOR(0:NPROCS_WORLD-1))
#if defined(SIMULATE_SEVERAL_NODES)
C For local testing only, not to be activated.
IF (NPROCS_WORLD.LE.1) THEN
WRITE(*,'(A)') ' BENCH: More than 1 MPI processs needed '
CALL MPI_FINALIZE(IERR)
STOP
ENDIF
WRITE(MYNAME, '(A,I4)') "Node ",MYID_WORLD/(NPROCS_WORLD/2)
MYNAME_LENGTH = 9
#else
CALL MPI_GET_PROCESSOR_NAME(MYNAME, MYNAME_LENGTH, IERR )
#endif
WRITE(*,'(I4,A)') MYID_WORLD,
& " : NODE NAME="//MYNAME(1:MYNAME_LENGTH)
C
C Read configuration file
C
IF (MYID_WORLD .EQ. 0) THEN
WRITE(*,'(A)') "BENCH: Reading configuration file"
READ(*,*,ERR=200, END=200) NX, NY, NZ
WRITE(*,'(A,3I3)') "BENCH: Read NX NY NZ =",NX,NY,NZ
READ(*,*,ERR=200, END=200) K
WRITE(*,'(A,I3)') "BENCH: Read K =", K
READ(*,*, ERR=200, END=200) NB_ITERATIONS
WRITE(*,'(A,I3)') "BENCH: Read NB_ITERATIONS =", NB_ITERATIONS
ALLOCATE (NB_INSTANCES(NB_ITERATIONS),
& CHECK(NB_ITERATIONS))
DO IT = 1, NB_ITERATIONS
READ(*,*,ERR=200,END=200) TMP_STRING
WRITE(*,'(A,I3,A,A)') "BENCH: Read #instances for IT.",
& IT,"=", TMP_STRING
IF (TMP_STRING(1:3) .EQ. "MAX") THEN
NB_INSTANCES(IT) = huge(NB_INSTANCES(IT))
ELSE
READ(TMP_STRING,*,ERR=200) NB_INSTANCES(IT)
ENDIF
READ(*,*,ERR=200) CHECK(IT)
WRITE(*,'(A,I3,A,I1)') "BENCH: Read CHECK value for IT.",
& IT,"=",CHECK(IT)
ENDDO
GOTO 300
200 CONTINUE
C Error while reading configuration file
WRITE(*,'(A)') "BENCH: ERROR IN INPUT FILE FORMAT"
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(IERR)
300 CONTINUE
ENDIF
C Broadcast main parameters
CALL MPI_BCAST( NX, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, IERR)
CALL MPI_BCAST( NY, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, IERR)
CALL MPI_BCAST( NZ, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, IERR)
CALL MPI_BCAST( K, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, IERR)
CALL MPI_BCAST( NB_ITERATIONS, 1, MPI_INTEGER, 0,
& MPI_COMM_WORLD, IERR)
CALL BUILD_COMMUNICATORS( MYNAME, MYNAME_LENGTH,
& MPI_COMM_WORLD, COMM,
& K, MYID_WORLD, NPROCS_WORLD,
& MPI_PER_NODE, MPI_PER_COMM, NB_COMM_MAX, COLOR )
IF (MYID_WORLD .EQ. 0) THEN
!$ NOMP = OMP_GET_MAX_THREADS()
WRITE(*,'(A)') "BENCH:======================================"
WRITE(*,'(A,I4)') "BENCH:#MPI processes per node :",
& MPI_PER_NODE
WRITE(*,'(A,I4)') "BENCH:#OpenMP threads per MPI process :",
& NOMP
WRITE(*,'(A,I4)') "BENCH:#MPI processes per communicator :",
& MPI_PER_COMM
WRITE(*,'(A,I4)') "BENCH:NB_COMM_MAX (#communic. created):",
& NB_COMM_MAX
WRITE(*,'(A,I4)') "BENCH:shmem communications ratio :", K
WRITE(*,'(A,I4)') "BENCH:NB_ITERATIONS :",
& NB_ITERATIONS
WRITE(*,'(A)') "BENCH:======================================"
WRITE(*,*)
C MPI proces with rank k is in communicator COLOR(k)
WRITE(*,'(A,300I5)')
& "BENCH: COLOR array defining communicators:", COLOR
IF ( NB_COMM_MAX * K .NE. MPI_PER_NODE ) THEN
WRITE(*,*) "BENCH: Note: ", MPI_PER_NODE/NB_COMM_MAX,
& " MPI ranks per node unused"
ENDIF
ENDIF
CALL MPI_COMM_SIZE( COMM, NPROCS_COMM, IERR )
CALL MPI_COMM_RANK( COMM, MYID_COMM, IERR )
C
IF (MPI_PER_COMM .NE. NPROCS_COMM) THEN
WRITE(*,'(A,I4,A,I4)')
& "BENCH: ERROR IN BUILD_COMMUNICATORS: MPI_PER_COMM =",
& MPI_PER_COMM, " but MPI_COMM_SIZE returns",NPROCS_COMM
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(MPI_COMM_WORLD, IERR)
ENDIF
C ---------------------------------------------
C Initialize a MUMPS instance on all the MPI
C processes that are part of a new communicator
C ---------------------------------------------
MY_COMM_COLOR = COLOR(MYID_WORLD)
IF ( MY_COMM_COLOR .LT. NB_COMM_MAX ) THEN
C NB_COMM_MAX = 1 => communicator 0 (processes with color 0)
C NB_COMM_MAX = 2 => communicators 0,1 (processes with colors 0,1)
C NB_COMM_MAX = 3 => communicators 0,1,2, etc.
id%JOB = -1
id%SYM = 0
id%CNTL(1) = 0.0D0
id%PAR = 1
id%COMM = COMM
CALL DMUMPS(id)
C ---------------------------------------
C Initialize problem and perform analysis
C ---------------------------------------
id%JOB = 1
IF ( MYID_COMM .EQ. 0 ) THEN
C Matrix is initialized on each master
CALL ALLOCATE_INSTANCE( id, NX, NY, NZ, NRHS, MYID_WORLD )
ENDIF
IF (MYID_WORLD .EQ. 0) THEN
WRITE(*,*)
WRITE(*,'(A)') " ===================================="
WRITE(*,'(A)') " 11pt discr. pb characteristics "
WRITE(*,'(A, I9)')" NX =", NX
WRITE(*,'(A, I9)')" NY =", NY
WRITE(*,'(A, I9)')" NZ =", NZ
WRITE(*,'(A, I9)')" NRHS =", NRHS
WRITE(*,'(A, I9)')" id%N =", id%N
WRITE(*,'(A, I9)')" id%NNZ =", id%NNZ
WRITE(*,'(A)') " ===================================="
WRITE(*,*)
ENDIF
id%ICNTL(7)=5 ! Metis ordering should be used
id%KEEP(3)=32
id%KEEP(6)=16
id%KEEP(5)=16
id%KEEP(4)=32
if (id%SYM .EQ. 0) THEN
id%KEEP(9)=350
else
id%KEEP(9)=200
endif
id%KEEP(102)=110
id%KEEP(375)=1
id%KEEP(77)=75
id%KEEP(78)=2
id%KEEP(83)=min(8,NPROCS_COMM)
id%KEEP(68)=25
id%KEEP(263)=0
id%KEEP(213) = 101
id%KEEP(85)=-4
id%KEEP(376)=1
IF (MYID_WORLD.EQ.0) THEN
WRITE(*,*) " CONFIGURATION: MUMPS internal SETTING:"
DO I=1, 500
WRITE(*,*) " ... KEEP(", I, ")=", id%KEEP(I)
ENDDO
ENDIF
CALL DMUMPS(id)
IF (id%INFOG(1) .LT. 0) THEN
WRITE(*,'(A,I4,I4)')
& "BENCH: ERROR DURING MUMPS ANALYSIS, INFOG(1:2)=",
& id%INFOG(1:2)
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(MPI_COMM_WORLD, IERR)
ENDIF
ENDIF
C
DO IT= 1, NB_ITERATIONS
C For each iteration, perform a factorization and possibly a solve
C Number of communicators is limited by MPI_PER_NODE/K=NB_COMM_MAX
IF (MYID_WORLD.EQ. 0) THEN
NB_COMM_IT = min(NB_INSTANCES(IT), NB_COMM_MAX)
CHECK_IT = CHECK(IT)
WRITE(*,*)
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH:======================================"
WRITE(*,'(A,I3, A,I3)')
& "BENCH: Starting it.", IT,
& " with #simultaneous instances= ",
& NB_COMM_IT
WRITE(*,'(A,I1)') "BENCH: CHECK = ",CHECK_IT
WRITE(*,'(A)') "BENCH:======================================"
WRITE(*,*)
WRITE(*,*)
ENDIF
CALL MPI_BCAST( NB_COMM_IT, 1, MPI_INTEGER, 0,
& MPI_COMM_WORLD, IERR)
CALL MPI_BCAST( CHECK_IT, 1, MPI_INTEGER, 0,
& MPI_COMM_WORLD, IERR)
IF (CHECK_IT.EQ.0) THEN
id%KEEP(201)=-1
ELSE
id%KEEP(201)=0
ENDIF
CALL SYSTEM_CLOCK( t_start )
IF ( MY_COMM_COLOR .LT. NB_COMM_IT ) THEN
WRITE(*,'(A,I4,A,I4)') "BENCH:",MYID_WORLD,
& " participates to it.",IT
C ---------------------------
C JOB=2: MATRIX FACTORIZATION
C ---------------------------
id%JOB=2
! id%ICNTL(1:4)=0
CALL DMUMPS(id)
C
IF (MYID_WORLD .EQ. 0.AND.id%ICNTL(35).GT.0) THEN
C - print BLR flops
WRITE(*,'(A,ES10.3,ES10.3)') " ** RINFOG(3)(14)= ",
& id%RINFOG(3),id%RINFOG(14)
ENDIF
C
IF (id%INFOG(1) .LT. 0) THEN
WRITE(*,'(A,I4,I4)')
& "BENCH: ERROR DURING MUMPS FACTORIZATION: INFOG(1:2)=",
& id%INFOG(1:2)
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(MPI_COMM_WORLD, IERR)
ENDIF
CALL SYSTEM_CLOCK(t_end, t_rate)
IF (MYID_COMM .EQ. 0) THEN
C Print for each instance
WRITE(*,'(A,I3,A,I3,A,I3,A,F10.3)')
& "BENCH: TIME (seconds) factorization for",
& MYID_WORLD," (COMM_COLOR ", MY_COMM_COLOR,
& ", it.",IT,") = ",
& dble( t_end - t_start ) / dble( t_rate )
ENDIF
ENDIF
C
C Synchronization between iterations
C
CALL MPI_BARRIER(MPI_COMM_WORLD, IERR)
IF (MYID_WORLD .EQ. 0) THEN
CALL SYSTEM_CLOCK(t_end, t_rate)
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH: ==================================== "
WRITE(*,'(A,I3,A,I3,A,F10.3)')
& "BENCH: TIME (seconds) FOR ITERATION ",
& IT,
& " with #simultaneous instances=",
& min(NB_INSTANCES(IT), NB_COMM_MAX ),
& "=", dble( t_end - t_start ) / dble(t_rate)
WRITE(*,'(A)') " ==================================== "
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH:"
ENDIF
IF (CHECK_IT .EQ. 1 ) THEN
IF ( MY_COMM_COLOR .LT. NB_COMM_IT ) THEN
C ---------------
C Perform a solve
C ---------------
IF ( MYID_COMM .EQ. 0 ) THEN
CALL RANDOM_NUMBER(id%RHS)
ENDIF
id%ICNTL(11) = 2
!id%ICNTL(1:4)=0
id%JOB=3
CALL DMUMPS(id)
IF (MYID_COMM .EQ. 0) THEN
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A,ES10.3,A,I4,A,I4,A)')
& "BENCH: Scaled Residual (<1D-12): ", id%RINFOG(6),
& " (COMM_COLOR ", MY_COMM_COLOR, ", it.",IT,")"
IF (id%RINFOG(6).GE.1D-12) THEN
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)')
& "BENCH: ERROR RESIDUAL (RINFOG(6)) TOO LARGE "
WRITE(*,'(A)') "BENCH:"
ENDIF
IF (FLOPS_REFERENCE .NE. 0.0D0) THEN
WRITE(*,'(A,ES16.5,A,I4,A,I4,A)')
& "BENCH: FLOPS_REFERENCE DIFFERENCE=",
& FLOPS_REFERENCE - id%RINFOG(3),
& " (COMM_COLOR ", MY_COMM_COLOR, ", it.",IT,")"
IF (abs(FLOPS_REFERENCE - id%RINFOG(3)).GT.1.0D0)
& THEN
WRITE(*,'(A)')
& "BENCH: ERROR FLOPS_REFERENCE DIFFERENCE is NONZERO"
ENDIF
ELSE
C Set flops reference
WRITE(*,'(A,I3,A,ES16.5,A,I4,A,I4,A)')
& "BENCH:",MYID_WORLD,
& " setting FLOPS_REFERENCE =", id%RINFOG(3),
& " (COMM_COLOR ", MY_COMM_COLOR, ", it.",IT,")"
FLOPS_REFERENCE = id%RINFOG(3)
ENDIF
ENDIF
ENDIF
C This instance was checked, use FLOPS_REFERENCE
C from process with rank 0 on all processes
CALL MPI_BCAST( FLOPS_REFERENCE, 1, MPI_DOUBLE_PRECISION, 0,
& MPI_COMM_WORLD, IERR)
ELSE
IF ( MY_COMM_COLOR .LT. NB_COMM_IT ) THEN
IF (MYID_COMM .EQ. 0) THEN
IF ( FLOPS_REFERENCE .NE. 0.0D0 ) THEN
WRITE(*,'(A,ES16.5,A,I4,A,I4,A)')
& "BENCH: FLOPS_REFERENCE DIFFERENCE=",
& FLOPS_REFERENCE - id%RINFOG(3),
& " (COMM_COLOR ", MY_COMM_COLOR, ", it.",IT,")"
IF (abs(FLOPS_REFERENCE - id%RINFOG(3)).GT.1.0D0)
& THEN
WRITE(*,'(A)')
& "BENCH: ERROR FLOPS_REFERENCE DIFFERENCE is NONZERO"
ENDIF
ENDIF
ENDIF
ENDIF
ENDIF
ENDDO
C
IF (MYID_WORLD .EQ. 0) THEN
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH:"
WRITE(*,'(A)') "BENCH: ====================================="
WRITE(*,'(A)') "BENCH: All iterations have finished. "
WRITE(*,'(A)') "BENCH: Destroying instances and finalizing "
WRITE(*,'(A)') "BENCH: ====================================="
ENDIF
C
C ---------------------------
C Destroy all MUMPS instances
C ---------------------------
IF ( COLOR(MYID_WORLD) .LT. NB_COMM_MAX ) THEN
id%JOB=-2
CALL DMUMPS(id)
IF (MYID_COMM .EQ. 0) THEN
C Free matrix and right-hand side
DEALLOCATE(id%IRN, id%JCN, id%A, id%RHS)
NULLIFY(id%IRN, id%JCN, id%A, id%RHS)
ENDIF
ENDIF
IF (MYID_WORLD .EQ. 0) THEN
DEALLOCATE(NB_INSTANCES)
DEALLOCATE(CHECK)
ENDIF
CALL MPI_FINALIZE(IERR)
END PROGRAM MUMPS_BENCH
C
C ----------------------------------------------------------------
C
SUBROUTINE BUILD_COMMUNICATORS( MYNAME, MYNAME_LENGTH,
& OLD_COMM, NEW_COMM,
& K, MYID, NPROCS,
& MPI_PER_NODE,
& MPI_PER_COMM,
& NB_COMMUNICATORS, COLOR )
IMPLICIT NONE
INCLUDE 'mpif.h'
INTEGER, INTENT(IN) :: OLD_COMM, MYID, NPROCS, K
INTEGER, INTENT(OUT) :: NEW_COMM
INTEGER, INTENT(OUT) :: MPI_PER_NODE,
& MPI_PER_COMM,
& NB_COMMUNICATORS
INTEGER, INTENT(OUT) :: COLOR(0:NPROCS-1)
CHARACTER(len=MPI_MAX_PROCESSOR_NAME), INTENT(IN) :: MYNAME
INTEGER, INTENT(IN) :: MYNAME_LENGTH
C
C Local declarations
C ==================
C
INTEGER :: IERR
C
INTEGER :: NB_ON_THIS_NODE, MAX_ON_A_NODE, MIN_ON_A_NODE, NB_NODES
INTEGER :: CURRENT_INODE_REP
INTEGER :: IPROC ! for loops between 0 and NPROCS-1
INTEGER, ALLOCATABLE, DIMENSION(:) :: IS_ON_SAME_NODE
INTEGER, ALLOCATABLE, DIMENSION(:) :: TABLE_OF_PROCESSES
C
ALLOCATE(IS_ON_SAME_NODE(0:NPROCS-1))
CALL SET_IS_ON_SAME_NODE( MYNAME, MYNAME_LENGTH,
& MYID, NPROCS, IS_ON_SAME_NODE,
& MPI_COMM_WORLD )
C On exit, IS_ON_SAME_NODE is an array of size NPROCS,
C identical on all MPI ranks. We illustrate its content
C in the example below, with NPROCS=12.
C Assuming we have:
C MPI rank : 0 1 2 3 4 5 6 7 8 9 10 11
C node name : A D B B B A C D D C A C
C Then, IS_ON_SAME_NODE = 0 1 2 2 2 0 6 1 1 6 0 6
C It is such that IS_ON_SAME_NODE(i)=IS_ONS_SAME_NODE(j)=k if i
C and j and k are on the same node, and k is the smallest rank
C among the MPI processes present on that node.
C
ALLOCATE(TABLE_OF_PROCESSES(0:NPROCS-1))
DO IPROC = 0, NPROCS-1
TABLE_OF_PROCESSES(IPROC)=IPROC
ENDDO
CALL BUBBLE_SORT_INT( NPROCS, IS_ON_SAME_NODE(0),
& TABLE_OF_PROCESSES(0) )
C
C MPI rank : 0 1 2 3 4 5 6 7 8 9 10 11
C node name : A D B B B A C D D C A C
C
C corresponds to:
C
C TABLE_OF_PROCESSES = 0 5 10 1 7 8 2 3 4 6 9 11
C node name : A A A D D D B B B C C C
C IS_ON_SAME_NODE = 0 0 0 1 1 1 2 2 2 6 6 6
C
C COLOR (see below) = 0 1 2 0 1 2 0 1 2 0 1 2
C Indeed, this means: meaning COLOR(0) = 0, COLOR(5)=1,
C COLOR(10)=2, COLOR(1)=1, COLOR(7) = 1, etc.
C
C Check Number of MPI per node
C
CURRENT_INODE_REP = -99999
MAX_ON_A_NODE = -99999
MIN_ON_A_NODE = 99999
NB_ON_THIS_NODE = -99999
C IS_ON_SAME_NODE and TABLE_OF_PROCESSES are now sorted so
C that entries corresponding to a given node are contiguous
DO IPROC = 0, NPROCS-1
IF ( CURRENT_INODE_REP .NE. IS_ON_SAME_NODE(IPROC) ) THEN
C Beginning of a new node
CURRENT_INODE_REP = IS_ON_SAME_NODE(IPROC)
NB_ON_THIS_NODE = 1
ELSE
NB_ON_THIS_NODE = NB_ON_THIS_NODE + 1
ENDIF
IF (IPROC .EQ. NPROCS-1) THEN
C Last IPROC, NB_ON_THIS_NODE is valid
MIN_ON_A_NODE = min( MIN_ON_A_NODE, NB_ON_THIS_NODE )
MAX_ON_A_NODE = max( MAX_ON_A_NODE, NB_ON_THIS_NODE )
ELSE IF ( CURRENT_INODE_REP .NE. IS_ON_SAME_NODE(IPROC+1) ) THEN
C Last IPROC for that node, NB_ON_THIS_NODE is valid
MIN_ON_A_NODE = min( MIN_ON_A_NODE, NB_ON_THIS_NODE )
MAX_ON_A_NODE = max( MAX_ON_A_NODE, NB_ON_THIS_NODE )
ENDIF
C Define COLOR entry
C Processes with same color will form communicators:
C 1st on node i with 1st on node j and 1st on node k,
C 2nd on node i with 2nd on node j, etc.
COLOR(TABLE_OF_PROCESSES(IPROC)) = NB_ON_THIS_NODE - 1
ENDDO
C
IF (MAX_ON_A_NODE.NE. MIN_ON_A_NODE) THEN
IF (MYID .EQ. 0) THEN
WRITE(*,'(A,A,I3,A,I3)')
& "BENCH: CONFIGURATION ERROR:",
& "#MPI per node not constant: #MPI min=",
& MIN_ON_A_NODE, " and #MPI max=", MAX_ON_A_NODE
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID
CALL MPI_ABORT(IERR)
ENDIF
ENDIF
MPI_PER_NODE = MIN_ON_A_NODE
NB_COMMUNICATORS = MPI_PER_NODE / K
NB_NODES = NPROCS / MPI_PER_NODE ! should be exact
MPI_PER_COMM = K * NB_NODES ! output argument for checking
C
C Depending on the factor K, we create as many communicators
C as possible of size NPROCS / K.
C K = 1 => 3 communicators of size 4
C K = 2 => 1 communicator of size 8, 4 MPI processes per node unused
C K = 3 => 1 communicator of size 12
C
C ---------------------------------------------
C Create the inter-node communicators:
CALL MPI_COMM_SPLIT( OLD_COMM,
& COLOR(MYID)/K, ! Color
& COLOR(MYID), ! Key
& NEW_COMM,
& IERR )
C In the call above, COLOR(MYID)/K is the color to create
C communicators (same color => same communicator), and
C COLOR(MYID) is used as a key to sort MPI ranks within
C a communicator).
C
C Fix COLOR output array, which should be divided
C by K to be interpreted correctly on exit (COLOR).
COLOR = COLOR / K
RETURN
END SUBROUTINE BUILD_COMMUNICATORS
C
C ----------------------------------------------------------------
C
SUBROUTINE SET_IS_ON_SAME_NODE( MYNAME, MYNAME_LENGTH,
& MYID, NPROCS,
& IS_ON_SAME_NODE, COMM )
IMPLICIT NONE
INCLUDE 'mpif.h'
C
C Given a communicator COMM, build IS_ON_SAME_NODE on all
C MPI processes, where on exit, IS_ON_SAME_NODE( i ) = j
C means that MPI rank i is on the same node as MPI rank j,
C where j is the smallest MPI rank of the processes present
C on the node.
C
CHARACTER(len=MPI_MAX_PROCESSOR_NAME), INTENT(IN) :: MYNAME
INTEGER, INTENT(IN) :: MYNAME_LENGTH
INTEGER, INTENT(IN) :: MYID, NPROCS, COMM
INTEGER, INTENT(OUT):: IS_ON_SAME_NODE(0:NPROCS-1)
C
INTEGER :: IERR
C
CHARACTER(len=MPI_MAX_PROCESSOR_NAME) :: TMPNAME
INTEGER :: TMPNAME_LENGTH
INTEGER :: IPROC, IPROC_MIN
DO IPROC = 0, NPROCS - 1
IF ( IPROC. EQ. MYID ) THEN
TMPNAME_LENGTH = MYNAME_LENGTH
TMPNAME = MYNAME
ENDIF
CALL MPI_BCAST( TMPNAME_LENGTH, 1, MPI_INTEGER, IPROC,
& MPI_COMM_WORLD, IERR)
CALL MPI_BCAST( TMPNAME, TMPNAME_LENGTH, MPI_CHARACTER, IPROC,
& MPI_COMM_WORLD, IERR)
IS_ON_SAME_NODE( IPROC ) = 0
C Test below includes myself, leading to
C IS_ON_SAME_PROC(MYID) .eqv. .true.
IF ( TMPNAME_LENGTH .EQ. MYNAME_LENGTH ) THEN
IF ( TMPNAME(1:TMPNAME_LENGTH) .EQ. MYNAME(1:MYNAME_LENGTH) )
& THEN
IS_ON_SAME_NODE(IPROC) = 1
ENDIF
ENDIF
ENDDO
C For each node, define a representant
C (one of the MPI ranks on that node)
C We choose IPROC_MIN, ie, the one with smallest rank
DO IPROC = 0, NPROCS - 1
IF (IS_ON_SAME_NODE(IPROC) .EQ. 1) THEN
IPROC_MIN = IPROC
EXIT
ENDIF
ENDDO
DO IPROC = 0, NPROCS - 1
IF (IS_ON_SAME_NODE(IPROC) .EQ. 1) THEN
IS_ON_SAME_NODE(IPROC) = IPROC_MIN
ENDIF
ENDDO
CALL MPI_ALLREDUCE( MPI_IN_PLACE, IS_ON_SAME_NODE(0), NPROCS,
& MPI_INTEGER, MPI_MAX, COMM, IERR )
RETURN
END SUBROUTINE SET_IS_ON_SAME_NODE
C
C ----------------------------------------------------------------
C
SUBROUTINE ALLOCATE_INSTANCE( id, N1, N2, N3, NRHS, MYID_WORLD )
INCLUDE 'dmumps_struc.h'
INTEGER, INTENT(in) :: N1, N2, N3, NRHS, MYID_WORLD
C
C Prepares a MUMPS instance with user parameters on a
C master process. Assumes that id%SYM has been set.
C
INCLUDE 'mpif.h'
INTEGER :: IERR, I
TYPE (DMUMPS_STRUC) :: id
INTEGER :: allocok
INTEGER :: NMAX
INTEGER(8) :: NNZMAX
INTEGER(8) :: NNZ, j8, i8
INTEGER(8), ALLOCATABLE, DIMENSION(:) :: IP
INTEGER, POINTER, DIMENSION(:) :: IRN, JCN
DOUBLE PRECISION, POINTER, DIMENSION(:) :: A
C
CALL PT11AD_ANA(N1,N2,N3,id%N,id%NNZ,.TRUE.)
NMAX = id%N
NNZMAX = id%NNZ
id%NRHS = NRHS
id%LRHS = id%N
ALLOCATE(id%IRN(id%NNZ),id%JCN(id%NNZ),id%A(id%NNZ),
& IP(id%N+1),id%RHS(id%N*id%NRHS), stat=allocok)
IF (allocok > 0 ) THEN
WRITE(*,'(A)') "BENCH: ERROR: failure allocating matrix",
& allocok
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(MPI_COMM_WORLD, IERR)
ENDIF
CALL PT11AD(NMAX, NNZMAX, IERR, N1, N2, N3, id%N, id%NNZ, IP,
& id%IRN(1), id%A(1), 6, .TRUE., 1, .FALSE.)
C Convert from CSC to coordinate format
!$OMP PARALLEL DO
DO I = 1, id%N
id%JCN(IP(I):IP(I+1)-1) = I
ENDDO
!$OMP END PARALLEL DO
DEALLOCATE(IP)
C Case of symmetric matrix: update matrix to keep
C only lower triangular part + diagonal
IF ((id%SYM.EQ.1).OR.(id%SYM.EQ.2)) THEN
C{
NNZ=(id%NNZ-id%N)/2+id%N
ALLOCATE(IRN(NNZ), JCN(NNZ), A(NNZ), stat=allocok)
IF (allocok > 0 ) THEN
WRITE(*,'(A,I3)')
& "BENCH: ERROR: failure allocating sym. matrix",
& allocok
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(MPI_COMM_WORLD, IERR)
ENDIF
j8=1
DO i8=1,id%NNZ
C keep only lower triangualr matrix
if(id%IRN(i8).GE.id%JCN(i8)) then
IRN(j8)=id%IRN(i8)
JCN(j8)=id%JCN(i8)
A(j8)=id%A(i8)
j8=j8+1
endif
ENDDO
IF (j8-1.ne.NNZ) THEN
WRITE(6,'(A,I8,I8)')
& "BENCH: ERROR / internal error NNZ, j8-1=",
& NNZ, j8-1
WRITE(*,'(A,I4)') "BENCH: ** Aborting on MPI rank ",
& MYID_WORLD
CALL MPI_ABORT(MPI_COMM_WORLD, IERR)
ENDIF
id%NNZ = NNZ
DEALLOCATE(id%IRN, id%JCN, id%A)
id%IRN=>IRN
id%JCN=>JCN
id%A=>A
ENDIF
RETURN
END SUBROUTINE ALLOCATE_INSTANCE
C
C ----------------------------------------------------------------
C
SUBROUTINE PT11AD( NMAX, NZMAX, IFLAG,
& Nx, Ny, Nz,
& N, NNZ, IRST, JCN, A, LP, YESA, IPROB,GEN_VERBOSE )
*
*
* Produces Positive-Definite matrix from eleven point
* discretization on an M by N by P grid,
* with a nine point discretization in X/Y directions.
* The matrix A is generated BY ROWS.
* If YESA is .FALSE. only structure is generated.
*
* Order of A = NX*NY*NZ
* Nonzeros in A = (3*NX -2)*(3*ny-2)*nz +nx*ny*(2*nz-2)
*
* Input Parameters (not modified in MUP11A)
* ----------------
* NMAX, NZMAX INTEGER variables that need to be set to
* respectively the maximum order and
* the maximum number of nonzeros in the output matrix
* Nx, Ny, Nz INTEGER variable taht need be set to the
* dimension of the grid.
* LP INTEGER variable, Output unit for printing.
* YESA LOGICAL variable.
* If YESA is .FALSE. only the structure of the output
* matrix is generated
* IPROB INTEGER variable that need be set on entry.
* IF IPROB=1 then 3D-Poisson operator with 11-pt discretization
* stored in XYZ order is generated.
* ELSE ZYX storage is used.
*
*
* Output Parameters (need not be set on entry)
* -----------------
* IFLAG INTEGER variable that is set
* to the Error return (0 if no problem detected)
* N, NNZ INTEGER variables.
* N is the order of the output matrix, NNZ is the
* number of nonzeros.
* IRST, JCN, A: Output matrix in HB format (by rows).
*
INTEGER NMAX,IFLAG
INTEGER Nx, Ny, Nz
INTEGER N, IPROB, LP
INTEGER(8) :: NNZ,NZMAX, NTEMP_8,IPOS,IFLAG_8
INTEGER(8) IRST(NMAX+1)
INTEGER JCN(NZMAX)
DOUBLE PRECISION A(NZMAX)
LOGICAL YESA
*
INTEGER I, J, K, IncI, IncJ, IncK,
& IRow, IPT, JPT, KPT
INTEGER NTEMP
*
DOUBLE PRECISION ONE
#if 1
PARAMETER( ONE = 1.0D0 )
#else
PARAMETER( ONE = (1.0D0,0.0D0) )
#endif
LOGICAL,intent(in) :: GEN_VERBOSE
*
*
* check size of arrays
IFLAG = 0
NTEMP = Nx * Ny * Nz
IF (NMAX .LT. NTEMP) THEN
IFLAG = - Nx * Ny * Nz
IF (LP.GT.0) WRITE(LP,'(A,I10)') 'Increase NMAX to', NTEMP
GOTO 500
ENDIF
NTEMP_8 = (3*int(Nx,8)-2)*(3*int(Ny,8)-2)*int(Nz,8)
& + int(Nx,8)*int(Ny,8)*(2*int(Nz,8)-2)
IF (NZMAX .LT. NTEMP_8) THEN
IFLAG_8 =-NTEMP_8
IF (LP.GT.0) WRITE(LP,'(A,I10)') 'Increase NZMAX to', NTEMP_8
GOTO 500
ENDIF
*
*
IF (IPROB.EQ.1) THEN
if(GEN_VERBOSE) then
WRITE( 6, 1100 )
endif
1100 FORMAT(' 3D-Poisson operator with 11-point discretization',
& ' --- Stored in XYZ order' )
*
N = Nx * Ny * Nz
IPOS=1
IncI = 1
IncJ = Nx
IncK = Nx * Ny
*
DO 110 K = 1, Nz
KPT = (K-1) * IncK
*
DO 111 J = 1, Ny
JPT = (J-1) * IncJ
*
DO 112 I = 1, Nx
IRow = KPT + JPT + I
IRST(IRow) = IPOS
*
IF (K.EQ.1) GOTO 120
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow - IncK
IPOS = IPOS + 1
*
120 IF (J.EQ.1) GOTO 130
IF (I.GT.1) THEN
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow - IncJ - IncI
IPOS = IPOS + 1
ENDIF
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow - IncJ
IPOS = IPOS + 1
IF (I.LT.Nx) THEN
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow - IncJ + IncI
IPOS = IPOS + 1
ENDIF
*
130 IF (I.EQ.1) GOTO 140
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow - IncI
IPOS = IPOS + 1
*
140 CONTINUE
#if 1
IF (YESA) A(IPOS) = 22.0D0
#else
IF (YESA) A(IPOS) = (22.0D0,22.0D0)
#endif
JCN(IPOS) = IRow
IPOS = IPOS + 1
*
IF (I.EQ.Nx) GO TO 150
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow + IncI
IPOS = IPOS + 1
*
150 IF (J.EQ.Ny) GO TO 160
IF (I.GT.1) THEN
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow + IncJ - IncI
IPOS = IPOS + 1
ENDIF
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow + IncJ
IPOS = IPOS + 1
IF (I.LT.Nx) THEN
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow + IncJ + IncI
IPOS = IPOS + 1
ENDIF
*
160 IF (K.EQ.Nz) GO TO 112
IF (YESA) A(IPOS) = -2*ONE
JCN(IPOS) = IRow + IncK
IPOS = IPOS + 1
*
112 CONTINUE
111 CONTINUE
110 CONTINUE
*
NNZ = IPOS - 1
IRST(N+1) = NNZ + 1
ENDIF
*
*
*
*
*
IF (IPROB.NE.1) THEN
if(GEN_VERBOSE) then
WRITE( 6, 1200 )
endif